Family of curves of differential equations

Construct a differential equation of the family of plane curves defined by an algebraic equation. Suppose that a family of plane curves is described by the implicit one-parameter equation: F(x, y, C)=0.

We should differentiate the F(x, y, C)=0 once by considering y as a function of x and then eliminating the parameters C.

If a family of plane curves is given by the two-parameter equation

$F(x, y, C_1, C_2)=0,$

We should differentiate the $F(x, y, C_1, C_2)=0$, twice by considering y as a function of x and then eliminating the parameters C₁ and C₂ from the system of three equations.

The similar rule is applied to the case of n-parametric family of plane curves.

Problem: Derive the differential equation for the	$y = y^2 + y(2y)$ dy
family of plane curves defined by the equation $y =$	$y = x - x(2x - \frac{1}{dx})$
$x^2 - cx$.	$\rightarrow y - y^2 - 2y^2 + y - \frac{dy}{dy}$
Solution : We differentiate the implicit equation	$\Rightarrow y = x - 2x + x \frac{1}{dx}$
with respect to x:	$\rightarrow y \frac{dy}{dt} - y + y^2$
dy _	$\Rightarrow x \frac{dx}{dx} = y + x$
$\frac{1}{dx} = 2x - c$	As a result, we obtain the implicit
dy	differential equation corresponding to the
$\Rightarrow c = 2x - \frac{1}{dx}$	given family of plane curves.
Write this equation jointly with the original	
algebraic equation and eliminate the parameter C .	

Home Work:

- (i) Derive the differential equation for the family of two-parameter plane curves $y = C_1 x^2 + C_2 x$
- (ii) Find the differential equation of the family of curves $y = e^{2x} + C_2 e^{-2x}$
- (iii) Form the differential equation of all circles which pass through origin and whose centers lie on y-axis.
- (iv) Form the differential equation of all circles which pass through origin and whose centers lie on x-axis.
- (v) Derive the differential equation for $y = A \cos \alpha x + B \sin \beta x$, where A and B are arbitrary constants
- (vi) Form the DE of which $c(y + c)^2 = x^3$ is the complete integral where c is an arbitrary constants
- (vii) Form the differential equation of the following cases

a. $y = cx + c - c^3$ **e.** $y = c \sin^{-1} x$ **b.** $y = a \cos (mx + b)$ **f.** $y = Ae^{2x} + Be^{-3x} + Ce^{x}$ **c.** $xy = Ae^x + Be^{-x}$ **g.** $xy = Ae^x + Be^{-x} + x^2$ **d.** $y = \sin x + c$ **h.** $y = c(x - c)^2$

Formulations of Differential Equation

A general solution to a linear ODE is a solution containing a number of arbitrary variables (equal to the order of the ODE) corresponding to the constants of integration. A **particular** solution is derived from the general solution by setting the constants of integration to values that satisfy the initial value conditions of the problem.

Solve: $\frac{dy}{dx} = x$, for the general solution; for the	\Rightarrow y = $\frac{x^2}{2}$ + c [general solution]
particular solution with $y(0)=1$;	The initial value $y(0)=1$ means
For $\frac{dy}{dx} = x$, the general solution is	$1 = \frac{0}{c} + c \Rightarrow c = 1$
dy = x dx	\angle
Integrate this we get, $\int y dy = \int x dx$	The particular solution is therefore $y = \frac{x}{2} + 1$

Exercises

1.	Find the particular solution of the differential equation which satisfies the given initial
	condition: $\frac{dy}{dx} = 3x^2 - 1$ with y(o)=4.
2.	Find the particular solution of the differential equation which satisfies the given initial
	condition: $\frac{dy}{dx} = 2 \sin x$ with $y\left(\frac{\pi}{2}\right) = \pi$.
3.	Find the particular solution of the differential equation which satisfies the given initial
	condition: $\frac{dy}{dx} = \frac{1}{x^2}$ with y(1)=4.
4.	Find the particular solution of the differential equation which satisfies the given initial
	condition: $\frac{dy}{dx} = -\frac{x}{y}$ with $y(1) = \sqrt{2}$